Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Vektorraumhomomorphismus
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Vektorraumhomomorphismus
 
Autor Nachricht
King Mob
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 10.11.2004
Beiträge: 12
Wohnort: Kaiserslautern

BeitragVerfasst am: 12 Dez 2004 - 16:32:01    Titel: Vektorraumhomomorphismus

Kann mir hierzu jemand bitte einen Anhaltspunkt liefern?
"Es sei V der IR-Vektorraum aller konvergenten reellen Zahlenfolgen. Für alle n in IN sei (en) in V die "n-te Einheitsfolge", d.h. die Folge (en) = (0,0,...,0,1,0,...) mit der 1 an der n-ten Stelle.
Man beweise oder widerlege : ist f : V -> V ein Vektorraumhomomorphismus mit f(en) = en für alle n in IN , so ist f = id V die Identität auf V."
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Vektorraumhomomorphismus
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum