Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Zahlenfolgen
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Zahlenfolgen
 
Autor Nachricht
Sue84
Gast






BeitragVerfasst am: 28 Dez 2004 - 22:03:17    Titel: Zahlenfolgen

Geben Sie für die Folge 1/2; -1/4; 2/6; -6/8; 24/10; -120/12; ... das allgemeine Glied an!

Lösung: ak = (((-1)^k)*k!)/(2(k+1)), k>=0


Suchen Sie den kleinsten Index k für die Folge {(2k-1)/(k²+3)}, k>=1 mit ak<0.01!

Lösung: k = 200


Wie macht man sowas?


Über jede Antwort wäre ich sehr dankbar!


MfG Sue
Thomas_Da
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 21.11.2004
Beiträge: 352
Wohnort: Darmstadt

BeitragVerfasst am: 28 Dez 2004 - 23:05:39    Titel:

Eine generelle Regel, wie man so etwas macht, gibt es nicht. Da hilft nur viel üben, um Erfahung zu haben.
Ich nehme an, dass die Folge ak mit k=0 beginnt.

Wenn ich mir die Zahlen so ansehe, dann fällt mir auf, dass jede zweite Zahl negativ ist. Somit lautet ein Faktor der Folge:
(-1)^k

Als nächstes erkenne ich, dass der Nenner immer um 2 zunimmt. Damit ist der Nenner:
2*(k+1)

Nun suche ich eine Regel für den Zähler, die ich leider nicht sofort durchschaue. Da die Zahlen recht schnell wachsen muss es aus irgendeinem Produkt zusammengesetzt sein. Wenn ich nun prüfe mit welchem Faktor jeder Zähler multipliziert werden muss, damit der Folgezähler erzielt wird finde ich heraus:
1; 2; 3; 4; 5 und damit lautet der Zähler:
k!

Und alles zusammen dann:

ak = (-1)^k * k! / [2*(k+1)]

Je mehr man übt, desto schneller "sieht" man wie die Folge gebildet wird.
Sue84
Gast






BeitragVerfasst am: 29 Dez 2004 - 13:19:41    Titel:

Vielen Dank!

Aber da gibt es doch diese Zuordnungsvorschriften (rekursive, explizite / arithmetische Zahlenfolgen, geometrische Zahlenfolgen). Kann man die hier irgendwie anwenden?

Also
Arithmetische ZF:
rekursive ZV -> an+1 = an + d, d = an+1 - an
explizite ZV -> an = a1 + (n-1) * d

Geometrische ZF:
rekursive ZV -> an+1 = an * q, q = (an+1)/an
explizite ZV -> an = a1 * q^(n-1)
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Zahlenfolgen
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum