Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Unklare Umformung BOS Technik - lim-Lhospital
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Unklare Umformung BOS Technik - lim-Lhospital
 
Autor Nachricht
littledan
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 20.02.2006
Beiträge: 47

BeitragVerfasst am: 20 Apr 2007 - 08:29:31    Titel: Unklare Umformung BOS Technik - lim-Lhospital

Hallo, ich bin gerade dabei Abschlussprüfungen (abi-technik) der vergangen Jahre zu rechnen, dabei bin ich auf folgendes gestoßen:

1. den lim von 2X*e^1-X^2 für X gegen unendlich

2. es wird nach 2X/e^x^2-1 umgeformt um anschließend die L´Hospitalische Regel anwenden zu können, jedoch ist mir der schritt von 1 nach 2 nicht klar ich verstehe nicht nach welchem Gesetz dies umgeformt wird.

Über eine kurze erläuterung würde ich mich sehr freuen.

mfg
Matthias20
Moderator
Benutzer-Profile anzeigen
Moderator


Anmeldungsdatum: 25.05.2005
Beiträge: 11789
Wohnort: Hamburg

BeitragVerfasst am: 20 Apr 2007 - 08:35:54    Titel:

sieht der Term so aus?

=> 2x * e^(1-x^2)

Wenn ja:

2x * [e^(-1+x^2)]^(-1) <=> 2x * 1/(e^(-1+x^2)) <=> 2x / e^(-1+x^2)

Potenzgesetz: x^(-1) = 1/x

Ok?

Gruss:


Matthias
littledan
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 20.02.2006
Beiträge: 47

BeitragVerfasst am: 20 Apr 2007 - 08:37:06    Titel:

Super vielen Dank ich hab schon ewig geräzelt Embarassed
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Unklare Umformung BOS Technik - lim-Lhospital
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum