Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Potenzreihen
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Potenzreihen
 
Autor Nachricht
Sue20
Gast






BeitragVerfasst am: 31 Jan 2005 - 20:03:00    Titel: Potenzreihen

Hallo!

Ich hab ein Problem mit folgender Aufgabe:

Man bestimme jeweils die Entwicklungsstelle x* (den Mittelpunkt x*) des Konvergenzintervalles und den Konvergenzradius r der folgenden Potenzreihe (Summenzeichen) ck (x - x*)^k, (k=k0, k0+1,...; k0>=0):

a) (Summenzeichen) k(3x)^k

Lösung: x*=0, r=1/3

x*=0, aber für den Radius bekomme ich etwas anderes heraus:

ck ist doch k, oder??? Ich glaub hierin liegt der Fehler, denn:

r=lim (k gegen unendlich) |ck/ck+1| = k/(k+1) = k/(k(1+1/k)) -> k wird gekürzt, bleibt übrig: 1/(1+1/k) -> k gegen Unendlich: 1/(1+0) = 1 (nicht 1/3)

Was ist falsch?

Oder bei der zweiten Aufgabe komme ich auch nicht weiter:

b) (Summenzeichen) (1/3!)k^k {(x/2)-1}^k

Lösung: x*=2, r=0

x*=2 (denn (x/2)-1=0, nach x auflösen), aber was ist hier ck und wie berechne ich dann damit r?

Über jede Antwort wäre ich sehr dankbar!

MfG Sue
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Potenzreihen
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum