|
Autor |
Nachricht |
hermesb Full Member


Anmeldungsdatum: 13.11.2006 Beiträge: 286 Wohnort: München
|
Verfasst am: 05 Feb 2008 - 12:16:19 Titel: Fourier-Koeffizienten eines reinen sinus/cosinus |
|
|
Hallo,
ich steh gerade vor einer Aufgabe, bei der ich von einem reinen sinus, sprich f(t)=A*sin(2pif0t) die reele Fourier Reihe bis zur 3. Oberschwingung angeben soll.
Meine Frage nun: Ist die Fourier-Reihe eines reinen Sinus nicht gleich der Sinus? den dort gibt es ja keine Oberschwingungen, oder?
Also meine Anwort wäre gewesen Fourier-Reihe = f(t) |
|
 |
xeraniad Senior Member


Anmeldungsdatum: 29.01.2008 Beiträge: 1890 Wohnort: Atlantis
|
Verfasst am: 05 Feb 2008 - 13:17:40 Titel: |
|
|
Ja, das kann ich nur bestätigen. Die Zeitfunktion ist in diesem Fall bereits Fourier-zerlegt , es gibt nix zu tun , ausser die gegebene Funktion hinzuschreiben. Die komplexen Koeffizienten c[k] sind alle 0 ausser c[-1] = ½·j·A und c[1] = -½·j·A, daher b [1] = j·(c[1] - c[-1]) = A.
best regards
xeraniad |
|
 |
hermesb Full Member


Anmeldungsdatum: 13.11.2006 Beiträge: 286 Wohnort: München
|
Verfasst am: 05 Feb 2008 - 14:01:01 Titel: |
|
|
schönen Dank..manchmal sind die Antworten so einfach, daß man irg.nen Krampf hinschreibt, weil man glaubt daß das nicht stimmen kann  |
|
 |
|