Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Funktionsuntersuchung
Gehe zu Seite 1, 2  Weiter
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Funktionsuntersuchung
 
Autor Nachricht
Bubirator
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 11.03.2005
Beiträge: 11

BeitragVerfasst am: 11 März 2005 - 22:15:05    Titel: Funktionsuntersuchung

http://hometown.aol.de/Quaanaaq/Dok1.doc


Hallo,bitte kopiert bzw klickt diesen Link an und schaut Euch doch bitte die Funktion an.Und bitte sagt mir,welche davon richtig ist und warum?
Leider ist mein html deaktiviert.
Ihr würdet mir eine riesen Hilfe sein.Vielen Dank

PS : KEINE ANGST,ist kein Virus,müsst es ja nicht speichern,nur öffnen.
Gast







BeitragVerfasst am: 11 März 2005 - 22:34:17    Titel:

-x1 + x2 -1 = 0 , also (B)
Gast







BeitragVerfasst am: 11 März 2005 - 22:36:09    Titel:

Bubirator
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 11.03.2005
Beiträge: 11

BeitragVerfasst am: 11 März 2005 - 22:48:41    Titel:

aber warum B?
Du hast es eingesetzt.ok..nur wie ist das mit der Steigung?
denn wenn ich die 1.Ableitung nehme ,sprich f'(x)
kommt o raus..vielleicht steh ich auch auf dem schlauch.
Andromeda
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 10.12.2004
Beiträge: 1849
Wohnort: Tübingen

BeitragVerfasst am: 12 März 2005 - 00:11:40    Titel:

Bin nicht sicher, ob ich das Ganze richtig deute, wenn ja, dann ist es Lösung D) (1,-1)(x1,x2) + 1 = 0

Gruß
Andromeda
Bubirator
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 11.03.2005
Beiträge: 11

BeitragVerfasst am: 12 März 2005 - 03:53:17    Titel:

Wie kommst Du da drauf?
Wenn ich bei D) ausmultipliziere,dann komm doch 1X1 - 1X2 +1=0
wenn Du X1 gleich 0 setzt,hast DU für X2=1. Also der Das wär der Schnittpunkt der Geraden mit der X2-Achse.nur was sagt mir die +1 ganz rechts,ist das vielleicht der achenabschnitt?
Die erste Ableitung wäre ja 0,nur das entspricht ja irgendwie nicht der Steigung,oder doch? Hier sehe ich den Widerspruch..argh !Bitte um HIILFEEE
Andromeda
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 10.12.2004
Beiträge: 1849
Wohnort: Tübingen

BeitragVerfasst am: 12 März 2005 - 10:44:10    Titel:

Ja, die 1 ist der Achsenabschnitt. Und die Steigung ist 1. Zeig mal, wie du auf die 0 als Steigung kommst.

Gruß
Andromeda
Bubirator
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 11.03.2005
Beiträge: 11

BeitragVerfasst am: 12 März 2005 - 18:18:08    Titel:

Also,für die Steigung nehme ich die 1.Ableitung. Da ich hier jedoch 2Variablen habe,muss ich dies dann partiell oder gleichzeitig ableiten?
Wenn ich nach X1ableite ,kommt 1 rraus und bei X2abgeleitet,-1.
Ich komme auf die Steigung 0,wenn ich die Funktion ableite,sprich aus X1 wird 1 und aus X2 wird abgeleitet -1. Die 1 rechts fällt weg,da sie eine Kosntante ist.dann komme ich auf:
1-1=0 so bin ich auf die Steigung gekommen
Andromeda
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 10.12.2004
Beiträge: 1849
Wohnort: Tübingen

BeitragVerfasst am: 12 März 2005 - 18:23:22    Titel:

Also ich habe deine Aufgabe so gedeutet, dass x2 eine Funktion von x1 ist.

Dann ergit D)

x1 - x2 + 1 =0 => x2 = x1 + 1

Die Steigung ist dann die Ableitung von x2 nach x1 und ist somit 1.

Wie muss man denn die Aufgabe richtig deuten?

Gruß
Andromeda
Gast







BeitragVerfasst am: 12 März 2005 - 18:28:35    Titel:

Steigung = 1, das muss man nicht berechnen, das sieht man gleich, sofort.
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Funktionsuntersuchung
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Gehe zu Seite 1, 2  Weiter
Seite 1 von 2

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum