Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

berechnen der Kanten einer Oberfläche
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> berechnen der Kanten einer Oberfläche
 
Autor Nachricht
nicht belegt
Gast






BeitragVerfasst am: 26 März 2005 - 00:03:52    Titel: berechnen der Kanten einer Oberfläche

Liebe Leute,

Ich bin bildender Künstler und möchte eine Plastik gestalten für ein kleines Zimmer mit einer Höhe von 238 cm einer Breite von 342 cm und einer Tiefe von 378 cm, wobei ich mir die acht Ecken, zwölf Kanten und sechs Flächen dieses „Kastens“ als elastische Bauteile denke, die ich beliebig auseinander pflücken und neu verknüpfen kann.
In diesem Sinne sollen zwei gegenüberliegende Ecken, die eine hinten oben links, die andere vorne unten rechts, konvex in den Raum hinein umgestülpt werden. An jeder Ecke treffen sich ja drei Kanten und drei Flächen. Diese sollen bei den beiden umgestülpten Zipfeln auseinander gepflückt werden und die drei Kanten und Flächen von hinten oben links sollen mit den drei Kanten und Flächen von vorne unten rechts verbunden werden.
Der Raum hat dann zwei Ecken weniger und aus sechs Kanten und sechs Flächen werden drei Kanten und drei Flächen, und der Raum bekommt ein durchgehendes Loch. Oder positiv gesagt: Die Wände und der Boden kriegen einen Henkel.

Das ist meine Idee. Damit ist erst wenig darüber gesagt, wie das Ganze aussehen soll. Ich lege keinen Wert darauf, dass es so aussieht, als seien die Wände tatsächlich elastisch. Wie kann man so einen Henkel konstruieren, um ihn aus festem Material zu bauen?

Eine Möglichkeit wäre, ein dreikantiges Prisma in den Raum einzusetzen, das von einer Ecke zur anderen reicht und um 60° verdreht ist, damit seine Kanten an beiden Enden auf die gegebenen Innenkanten bei den Ecken treffen. Das Prisma müsste aus einzelnen dreieckigen Scheiben bestehen, um verdrehbar zu sein. Die Kanten zwischen den Flächen des Prismas und den Wänden des Zimmers müssten dann noch abgerundet werden, denn außer den schon vorhandenen, umgestülpten und verlängerten Kanten des Zimmers soll der Henkel keine weiteren Knicke haben.

Mir schwebt aber noch eine andere Möglichkeit vor, die mir einfacher realisierbar zu sein scheint, unter anderem weil die drei Flächen des Henkels dann abwickelbar wären:
Man nimmt die beiden Zipfel und steckt sie ineinander, so dass die einen drei Kanten die anderen drei berühren. Statt einer Drehung über die ganze Länge des Henkels hat man dann einen Knick in jeder Kante und jeder Fläche an der Verbindungsstelle. Außer dort sind die Kanten gerade. Die unerwünschten Knicke können anschließend abgerundet werden, indem man an ihrer Stelle Stücke von Zylinderwänden einsetzt.
Weitere einschränkende Bedingungen möchte ich allerdings noch dazunehmen:
Um perspektivische Täuschungen möglichst zu vermeiden, sollen alle Abstände, die gleich sein können, gleich sein und alle Kanten, die parallel sein können, sollen parallel sein.
Das soll heißen, dass die zwei verbundenen Stücke, aus denen der Henkel besteht, dreikantige Prismen mit gleich großen gleichseitigen Querschnitten sein sollen.
Wie groß der Abstand zwischen den parallelen Kanten sein soll, da kann ich mich noch nicht festlegen.

Ich bin mir ziemlich sicher, dass es möglich ist, alle diese Bedingungen zu erfüllen, weil ich mir ein Modell aus Papier gebastelt habe, wo es ganz danach aussieht, aber wie kann man die Kantenlängen und Winkelgrößen berechnen, um sich die zwei Prismen zuzuschneiden?

Das ist meine Frage. Nur um zu zeigen, dass ich nicht bloß faul bin und selber schon nach einer Lösung gesucht habe, schreibe ich meinen Ansatz mal hin:

Stellt man die Kanten eines Prismas in vektorieller Punkt-Richtungs-Form dar mit jeweils gleichen Richtungsvektoren, hat man die Kanten schon mal parallel und findet Schnittpunkte durch Gleichsetzen dieser Gleichungen.

A und B nenne ich hier mal die Schnittpunkte zweier Kanten eines Prismas mit den Innenkanten des Raumes und w; den kleineren Winkel zwischen der Strecke AB und einer Kante.
Der Abstand d der Kanten ist dann
d=sinw • AB
Den Richtungsvektor der Kanten nenne ich mal vec{a}. Will man keine Winkelgrößen in seiner Rechnung haben, kann man den Abstand d der Kanten auch so berechnen:

d = wurzel{AB^{2}– (vec{AB}×vec{a} / a) ^{2}}

Habe ich das richtig geschrieben?

Ich dachte mir, ich könnte jetzt durch Umformen und Einsetzen eine Gleichung bilden, mit der ich alle Kantenlängen in Abhängigkeit von d berechnen kann. Ich bin aber nicht in der Lage, mir die Gleichungen so umzuformen.

Kann mir jemand helfen? Ich bin für jeden Tip oder Hinweis dankbar.

Viele Grüße,
Oliver
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> berechnen der Kanten einer Oberfläche
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum