Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Dreieck im Kreis, Flächeninhalt als Funktion f(Kathete)=...
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Dreieck im Kreis, Flächeninhalt als Funktion f(Kathete)=...
 
Autor Nachricht
Quanty
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 26.02.2008
Beiträge: 980

BeitragVerfasst am: 15 Apr 2009 - 02:11:26    Titel: Dreieck im Kreis, Flächeninhalt als Funktion f(Kathete)=...

Hi ihr,
ich bins wieder, diesmal mit einer neuen Aufgabe.
Es geht um folgendes.
Man hat einen Hakbreis mit Radius 2,5 cm.
In diesem Halbkreis ist ein Dreieck mit Der Grundfläche des Durchmessers.
Jetzt soll man eine Funktion mit der Variable a aufstellen, der den Flächeninhalt angibt.
a ist eine Kathete des Dreeicks.
Rechenschieber
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 06.10.2008
Beiträge: 1187
Wohnort: Dorsten (NRW)

BeitragVerfasst am: 15 Apr 2009 - 03:27:02    Titel:

Hi Quanty,
hat ein Dreieck eine Grundfläche?, Very Happy

Das Wissen um den Satz des Thales (und den Abschnitten p und q auf c)
wäre auch nicht verkehrt...,
und was ist mit den anderen Aufgaben, worauf du dich melden wolltest?
Ich weiß nicht, ob dein Flugzeug unter die Brücke passt?

LGR
Tiamat
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 25.01.2008
Beiträge: 2092
Wohnort: Aurich

BeitragVerfasst am: 15 Apr 2009 - 05:38:49    Titel:

Hi Quanty,

du brauchst (wie Rechenschieber schon sagte) den Satz des Thales --> Welchen Winkel hat das Dreieck ABC bei C?
Damit kannst du eine vorläufige Flächenformel aufstellen, in der aber zwei Variablen vorkommen. Dann brauchst du noch den Satz des Pythagoras, um die eine Variable durch die andere auszudrücken und schon hast du deine endgültige Formel.
Rechenschieber
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 06.10.2008
Beiträge: 1187
Wohnort: Dorsten (NRW)

BeitragVerfasst am: 15 Apr 2009 - 05:40:32    Titel:

A=2,5*sqrt(a²-a^4/25)

Na ja, ich hab's mit dem Höhensatz und den Kathetensätzen gemacht.

setze 3 für a , oder 4 für a ein und du erhältst beide Male eine Fläche von 6 FE.

LGR
Tiamat
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 25.01.2008
Beiträge: 2092
Wohnort: Aurich

BeitragVerfasst am: 15 Apr 2009 - 05:48:27    Titel:

Rechenschieber hat folgendes geschrieben:
setze 3 für a , oder 4 für a ein und du erhältst beide Male eine Fläche von 6 FE.


Was willst du damit sagen? Ein sehr subtiler Hinweis auf das pythagoreische Tripel (3,4,5)? Denn die Fläche des Dreiecks beträgt keineswegs immer 6 FE...
Rechenschieber
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 06.10.2008
Beiträge: 1187
Wohnort: Dorsten (NRW)

BeitragVerfasst am: 15 Apr 2009 - 05:54:24    Titel:

Den ersten Teil siehst du ganz richtig J , aber dass ich behauptet hätte, dass... Very Happy

Schönen 2501

LGR
Quanty
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 26.02.2008
Beiträge: 980

BeitragVerfasst am: 15 Apr 2009 - 13:26:07    Titel:

Also das mit dem Flugzeug hab ich ausgerechnet ,
aber hab die Lösung verschlampt (ob dus glaubst oder nicht^^).
Hab eben die Lösung 5<x>4 (So was ähnliches) Rausbekommen,
und war damit zufrieden weil es beim einsetzen klappte^^

Ich hab die Aufgabe auch irgendwie raus aber ohne Thalessatz,
muss nochmal die Lösung suchen (war ne seltsame Lösung)
Rechenschieber
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 06.10.2008
Beiträge: 1187
Wohnort: Dorsten (NRW)

BeitragVerfasst am: 16 Apr 2009 - 15:14:31    Titel:

Also Quanty, du kannst nicht im selben Absatz zwei Sachen beschreiben, das liest sich schlecht.
Also: Flugzeugaufgabe kannst du ja wiederholen (trainiert das Gedächtnis, und falls es dir nicht einfällt, hast du es noch nicht so richtig drauf Very Happy )

Bei dieser Aufgabe hier hast du 5<x>4 genannt.
Wie kommst du auf diese Schreibweise?
Dann sagst du, die Lösung hast du gefunden, aber sie sei seltsam?
Du brauchst ja nur vergleichen, ob sie mit meiner Lösung identisch ist.
Letztendlich, wenn deine Formel richtig ist, muss sie auch so umgestellt werden können, dass sie auf meine Schreibweise hinausläuft.
Ich habe auch gesagt, dass ich Höhensatz und Kathetensatz nahm.

Der Höhensatz stammt von Euklid, etwa 200 Jahre später als Thales von Milet. Insgeheim ist im Höhensatz der Satz des Thales verborgen, denn die Höhe h teilt in dem Halbkreis die Strecke c (Durchmesser) in p und q.

LGR
Nofeys
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 08.04.2009
Beiträge: 671

BeitragVerfasst am: 16 Apr 2009 - 15:50:49    Titel:

Müsste es nicht auch so lösbar sein: ?

Da es sich hier doch wohl immer um ein rechtwinkliges Dreieck handelt, müsste die Fläche doch gleich a*b/2 sein oder nicht?
b entspricht laut Pytagoras sqrt(5^2-a^2)
also
A = a*sqrt(5^2-a^2)/2
A = a*sqrt(25-a^2)/2
oder sehe ich da was falsch?

Lg Nofeys
Tiamat
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 25.01.2008
Beiträge: 2092
Wohnort: Aurich

BeitragVerfasst am: 16 Apr 2009 - 16:24:21    Titel:

Jaa! Genau das meinte ich! Warum den Umweg über den Höhensatz gehen? So ist es meiner Meinung nach einfacher! Very Happy

Edit: Du hast aber nun doch unbewusst den Thalessatz angewandt, denn dass das Dreieck immer rechtwinklig ist, ist nicht so trivial wie du denkst, genau das sagt Thales! Wink
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Dreieck im Kreis, Flächeninhalt als Funktion f(Kathete)=...
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum