Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Gleichungen
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Gleichungen
 
Autor Nachricht
Miriz
Gast






BeitragVerfasst am: 17 Mai 2005 - 18:02:38    Titel: Gleichungen

Hallo,
folgende Gleichung sei zu lösen:
1/16* (4^((1/2*x)-2)) = 2^(3*x)
kann mir bitte jemand helfen wie ich hier x herausbekomme.
Vielen Dank
Miri
phoo
Gast






BeitragVerfasst am: 17 Mai 2005 - 18:28:21    Titel:

Hi,

1/16* (4^((1/2*x)-2)) = 2^(3*x)

<=> e^(x*ln(4)/2)/256 = 2^(3*x)

<=> e^(x*ln(2))/256 = e^(3*x*ln(2))

<=> 2^(x - 8) = 2^(3*x)

<=> x = -4

cu..
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Gleichungen
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum