Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

gebrochenrationale Funktionen
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> gebrochenrationale Funktionen
 
Autor Nachricht
Herm
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 01.05.2004
Beiträge: 1
Wohnort: Springe

BeitragVerfasst am: 01 Mai 2004 - 20:16:18    Titel: gebrochenrationale Funktionen

hallo allerseits.

ich schreibe nächste woche (genauer gesagt montag) mein mathe abi und habe bei der wiederholung schwere lücken entdeckt.

hier sind ein paar meiner probleme:

Wie beweise ich eine Punktsymmetrie zu einem Punkt?

Wie leite ich gebrochenrationale Funktionen AUF wie z.B. 2x/(x²+k²) +1/k


bitte helft mir *Schluchz*

1000 dank im vorraus,

herm
xaggi
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 15.03.2004
Beiträge: 1190

BeitragVerfasst am: 02 Mai 2004 - 07:34:38    Titel:

> Wie beweise ich eine Punktsymmetrie zu einem Punkt?

f(-x) bilden,
1. f(-x) = f(x) => Achsensymmetrisch mit y-Achse
2. f(-x) = -f(x) => Punktsymmetrisch mit Ursprung

andere Symmetrien weißt du am besten nach, indem du zuerst die Funktion so verschiebst, dass der Punkt auf den Ursprung fällt.

> Wie leite ich gebrochenrationale Funktionen AUF wie z.B. 2x/(x²+k²) +1/k

Quotientenregel:
f(x) = u(x) / v(x)
f'(x) = (u'(x) * v(x) - u(x) * v'(x)) / (v(x))²
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> gebrochenrationale Funktionen
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Seite 1 von 1

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum