Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Übungsaufgabe LinA 1 (lineare Unabhängigkeit/Abhängigkeit)
Gehe zu Seite 1, 2, 3  Weiter
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Übungsaufgabe LinA 1 (lineare Unabhängigkeit/Abhängigkeit)
 
Autor Nachricht
das.mysterium
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 08.11.2005
Beiträge: 11

BeitragVerfasst am: 24 Nov 2005 - 20:00:21    Titel: Übungsaufgabe LinA 1 (lineare Unabhängigkeit/Abhängigkeit)

Hey Leute!
Ich sitze gerade über meinen Übungsaufgaben nd komme nicht recht weiter....
Hier die Aufgabe:
Es seien a,b,c drei Vektoren eines Vektorraumes V über einem Körper K. Zeigen Sie:
(a) a-b, b-c, und c-a sind linear abhängig.
(b) Falls 1+1 ist ungleich 0 in K gilt, sind a,b,c genau dann linear unabhängig, wenn a+b, b+c, c+a linear unabhängig sind.

Also es wär echt lieb, wenn mir da jemand weiterhelfen könnte...
Danke schonmal!
miriam84
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 02.11.2005
Beiträge: 561
Wohnort: Wuppertal

BeitragVerfasst am: 24 Nov 2005 - 20:26:24    Titel:

weißt du denn was die definition von linear (un-)abhängig ist?
wenn ja dann schreib mal hier rein
BBFan18
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 24.10.2005
Beiträge: 1791
Wohnort: Hilden

BeitragVerfasst am: 24 Nov 2005 - 21:01:33    Titel:

a) ist ne trivialität!
miriam84
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 02.11.2005
Beiträge: 561
Wohnort: Wuppertal

BeitragVerfasst am: 24 Nov 2005 - 22:30:00    Titel:

wie gesagt, die aufgabe ist ziemlich einfach... wenn man genau verstanden hat was die lineare (un-)abhängigkeit der vektoren bedeutet
das.mysterium
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 08.11.2005
Beiträge: 11

BeitragVerfasst am: 25 Nov 2005 - 09:24:23    Titel:

also ich ´bin mir immer nicht ganz sicher, ob ich das wirklich verstanden habe.
also vektoren (a1, a2, a3,...) sind genau dann linear abhängig, wenn es zahlen (zb b, c, d,...) gibt, die nicht sämtlich gleich 0 sind und für die dann gilt: ba1 + ca2 + da3 + ...= 0
oder wenn ein vektor mit hilfe der anderen durch linearkombination dargestellt werden kann.
ansonsten sind sie linear unabhängig.
stimmt doch so, oder?
miriam84
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 02.11.2005
Beiträge: 561
Wohnort: Wuppertal

BeitragVerfasst am: 25 Nov 2005 - 17:41:18    Titel:

ja, man kann auch sagen, wenn einer der vektoren bereits durch einen anderen beschrieben wird

zum beispiel IR^3, ein dreidimensionaler raum mit länge, breite und höhe
dieser raum wird von drei vektoren aufgespannt bzw erzeugt, ein vierter vektor in der gleichen richtung wie einer der drei erzeugenden vektoren ist nicht nötig um irgendwelche punkte im raum zu beschreiben und linear abhängig

so und jetzt guck mal was a-b, b-c und c-a bedeutet
das.mysterium
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 08.11.2005
Beiträge: 11

BeitragVerfasst am: 25 Nov 2005 - 18:27:04    Titel:

also ich muss dann doch zeigen, dass:
µ1(a-b) + µ2(b-c) + µ3(c-a) = 0

wenn ich wälen würde µ1=2, µ2=2 und µ3=2 wäre das ergebnis 0
kann ich das so machen, oder habe ich es mir jetzt zu leicht gemacht?

ich danke dir auf jeden fall für deine hilfe!
miriam84
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 02.11.2005
Beiträge: 561
Wohnort: Wuppertal

BeitragVerfasst am: 25 Nov 2005 - 18:32:33    Titel:

weiß nicht ob du das genau so machen kannst, aber ich glaub das geht auch einfacher

die skalare müssen einfach nur ungleich null sein nimm mal den gleichen skalar und addiere alles
das.mysterium
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 08.11.2005
Beiträge: 11

BeitragVerfasst am: 25 Nov 2005 - 18:37:58    Titel:

also wenn ich den skalar µ habe, dann wäre die rechnung
µ(a-b) + µ(b-c) + µ(c-a) = µa-µb+µb-µc+µc-µa =0
meintest du das?
miriam84
Senior Member
Benutzer-Profile anzeigen
Senior Member


Anmeldungsdatum: 02.11.2005
Beiträge: 561
Wohnort: Wuppertal

BeitragVerfasst am: 25 Nov 2005 - 18:41:50    Titel:

genau, das kürzt sich alles weg

nimm einfach skalar gleich 1 dann steht da a-a+b-b+c-c, das ist bekanntlich gleich 0, ohne dass die skalare gleich 0 gewesen wären -> linear abhängig
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Übungsaufgabe LinA 1 (lineare Unabhängigkeit/Abhängigkeit)
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Gehe zu Seite 1, 2, 3  Weiter
Seite 1 von 3

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum