Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

Noch einmal Nullstellen
Gehe zu Seite Zurück  1, 2, 3, 4  Weiter
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> Noch einmal Nullstellen
 
Autor Nachricht
hunter_sephiroth
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 27.05.2006
Beiträge: 288

BeitragVerfasst am: 28 Mai 2006 - 15:17:00    Titel:

Zitat:
x^3 - x^2 -2x = 0
x mal (x^2 - x - 2)
x1=0


was haste da gemacht?
ausgeklammert?
Matthias20
Moderator
Benutzer-Profile anzeigen
Moderator


Anmeldungsdatum: 25.05.2005
Beiträge: 11789
Wohnort: Hamburg

BeitragVerfasst am: 28 Mai 2006 - 15:33:18    Titel:

er hat hier den Satz vom Nullprodukt angewendet!

0 = x*(x² - x - 2)

dann ist x1 = 0 und die weiteren Werte erhaelst Du, wenn die quadratische Gleichung 0 = x² - x - 2 geloest wird.

Matthias
hunter_sephiroth
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 27.05.2006
Beiträge: 288

BeitragVerfasst am: 28 Mai 2006 - 15:48:55    Titel:

den satz vom nullprodukt kann/versteh ich nicht
hatten wir inne schule acuh noch nie besprochen
kann man das auch alternativ lösen?
Matthias20
Moderator
Benutzer-Profile anzeigen
Moderator


Anmeldungsdatum: 25.05.2005
Beiträge: 11789
Wohnort: Hamburg

BeitragVerfasst am: 28 Mai 2006 - 15:53:03    Titel:

Polynomdivison! Waere aber zu aufwendig.

Der Satz ist ganz leicht. Wenn Du wie hier ueberall mind. ein x ausklammern kannst, ist dieses x schon mal null. Alles was weiterhin in der Klammer steht, muss normal (hier mit Mitternachtsformel) geloest werden.

Der Satz besagt, wird ein Faktor null, wird das ganze Produkt null!

Schau hier mal rein: http://de.wikipedia.org/wiki/Satz_vom_Nullprodukt

Matthias
Wodomol20
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 27.01.2006
Beiträge: 277

BeitragVerfasst am: 28 Mai 2006 - 15:54:45    Titel:

Was verstehst du da dran net???

z.B.
x^4 + x^2 + x = 0
--> x * (x^3 + x + 1)
x1 = 0

6x^4 - 2x^3 + 8x^2 = 0
2x² * (3x² - x + 4) = 0
x1,2 = 0

Is doch net schwer, oder?
hunter_sephiroth
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 27.05.2006
Beiträge: 288

BeitragVerfasst am: 28 Mai 2006 - 16:02:24    Titel:

achso jo sry
konnte nur mit dem begriff satz vom nullprodukt nix anfangen^^
habs kapiert thx

aber warum sucht ihr bei der ersten ableitung die nullstellen und dann die lokalen extrema
man soll doch die zweite ableitung benutzen
Matthias20
Moderator
Benutzer-Profile anzeigen
Moderator


Anmeldungsdatum: 25.05.2005
Beiträge: 11789
Wohnort: Hamburg

BeitragVerfasst am: 28 Mai 2006 - 16:18:32    Titel:

mit der zweiten ableitung bestimmst Du die Kruemmung und damit kannst Du die Art des Extremums argumentieren!

Was machst Du eigentlich, wenn Du f'(x) = 0 setzt?!
Du suchst dann die x-Werte, an denen die Steigung null ist! Und wo ist die Steigung null?
Versuch Dir mal den Sinn und Zweck der einzelnen Ableitungen klar zu machen, damit Du entsprechend argumentieren kannst.

Matthias
hunter_sephiroth
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 27.05.2006
Beiträge: 288

BeitragVerfasst am: 28 Mai 2006 - 16:21:48    Titel:

ok
wenn ich schon ma dabei bin^^
was ist der vorzeichenwechsel einer ableitung?
Matthias20
Moderator
Benutzer-Profile anzeigen
Moderator


Anmeldungsdatum: 25.05.2005
Beiträge: 11789
Wohnort: Hamburg

BeitragVerfasst am: 28 Mai 2006 - 16:27:03    Titel:

das musst Du genauer spezifizieren.

Allg. ein Bsp.:

Eine Funktion vierten Grades hat immer zwei, keinen aber nie nur einen WP - warum?

f(x) = ax^4 + bx³ + cx² + dx + e
f'(x) = 4ax³ + 3bx² + 2cx + d
f''(x) = 12ax² + 6bx + 2c

Fuer WP: f''(x) = 0
--> hat entweder zwei (einfache) Loesungen, d.h. f hat zwei Wendestellen oder keine Loesung, d.h. f hat keine Wendestelle oder eine doppelte Loesung, d.h. f''(x) wechselt das VZ nicht und somit gibt es keine Wendestelle.
hunter_sephiroth
Full Member
Benutzer-Profile anzeigen
Full Member


Anmeldungsdatum: 27.05.2006
Beiträge: 288

BeitragVerfasst am: 29 Mai 2006 - 20:17:12    Titel:

kann mir einer vllt mal seinen weg für die wendepunkte und die ergebnisse darstellen?
ich bin wieder mal zu dumm^^
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> Noch einmal Nullstellen
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Gehe zu Seite Zurück  1, 2, 3, 4  Weiter
Seite 3 von 4

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum