Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenDienstag, 23. Juli 2019 

Durchbruch im Verständnis des Stromtransports in Hochtemperatur-Supraleitern

02.06.2005 - (idw) Georg-August-Universität Göttingen

Ein Durchbruch im Verständnis des Stromtransports in Hochtemperatur-Supraleitern ist einem internationalen Forscherteam mit Beteiligung von Physikern der Universität Göttingen gelungen. Zusammen mit Experten aus den USA und Japan hat Privatdozent Dr. Christian Jooß vom Institut für Materialphysik die Auswirkungen so genannter Korngrenzen untersucht: Diese entstehen im Zusammenhang mit der unterschiedlichen Ausrichtung von Kristallen in supraleitenden Materialien und führen zu einer dramatischen Reduzierung ihrer Stromtragfähigkeit. Die Ursachen dafür waren bislang unbekannt. Mit der Entschlüsselung der zugrundeliegenden Mechanismen konnten die Wissenschaftler auch Wege zur Überwindung dieser Stromunterdrückung erproben. "Damit stehen jetzt eine ganze Reihe von Methoden zur Verfügung, sehr hohe verlustfreie Stromtragfähigkeiten von Hochtemperatur-Supraleitern zu erreichen", erläutert Dr. Jooß. Über die aktuellen Forschungsergebnisse informiert das Wissenschaftsmagazin Nature in seiner Ausgabe vom 26. Mai 2005. Pressemitteilung
Göttingen, 2. Juni 2005 / Nr. 191/2005

Durchbruch im Verständnis des Stromtransports in Hochtemperatur-Supraleitern
Internationales Forscherteam entschlüsselt Mechanismen so genannter Korngrenzen in Polykristallen

(pug) Ein Durchbruch im Verständnis des Stromtransports in Hochtemperatur-Supraleitern ist einem internationalen Forscherteam mit Beteiligung von Physikern der Universität Göttingen gelungen. Zusammen mit Experten aus den USA und Japan hat Privatdozent Dr. Christian Jooß vom Institut für Materialphysik die Auswirkungen so genannter Korngrenzen untersucht: Diese entstehen im Zusammenhang mit der unterschiedlichen Ausrichtung von Kristallen in supraleitenden Materialien und führen zu einer dramatischen Reduzierung ihrer Stromtragfähigkeit. Die Ursachen dafür waren bislang unbekannt. Mit der Entschlüsselung der zugrundeliegenden Mechanismen konnten die Wissenschaftler auch Wege zur Überwindung dieser Stromunterdrückung erproben. "Damit stehen jetzt eine ganze Reihe von Methoden zur Verfügung, sehr hohe verlustfreie Stromtragfähigkeiten von Hochtemperatur-Supraleitern zu erreichen", erläutert Dr. Jooß. Über die aktuellen Forschungsergebnisse informiert das Wissenschaftsmagazin Nature in seiner Ausgabe vom 26. Mai 2005.

Supraleitende Materialien haben die Eigenschaft, elektrischen Strom bei tiefen Temperaturen ohne merklichen Widerstand zu leiten. Dieser Effekt beruht auf einer kollektiven Abstimmung von Milliarden von Elektronen. Während konventionelle Supraleiter dazu eine Kühlung von mehr als -250 Grad Celsius erfordern, weisen Hochtemperatur-Supraleiter diese Fähigkeit schon bei Temperaturen von bis zu -108 Grad Celsius auf. Bei der Entwicklung von supraleitenden Materialien wie Kabeln kommt es dabei unvermeidlich zur Bildung von Korngrenzen, da die Züchtung kilometerlanger Kristalle mit gleichmäßiger Ausrichtung (Einkristalle) nicht möglich ist. Die Veränderungen in der Kristallstruktur - die Wissenschaftler verwenden dafür den Begriff der Polykristalle - führen zu Verschiebungen der Atome in ihrer idealen Gitterposition. Dies ändert die Struktur und Zusammensetzung des Materials in Abständen von bis zu 1,5 Nanometern an der Korngrenze. Dabei entstehen eine Sauerstoffverarmung und ungünstige elektrisch geladene Zonen auf der Nanometerskala, was zu der drastischen Reduzierung der Stromtragfähigkeit führt.

Dem internationalen Wissenschaftlerteam ist es im vergangenen Jahr gelungen, diese nanoskaligen Raumladungszonen mit modernen Methoden der Elektronenmikroskopie erstmals sichtbar zu machen. Für ihre Untersuchungen zum Phänomen der Korngrenzen verwendeten die Forscher dabei das Material YBa2Cu2O7, das supraleitende Fähigkeiten bei bis zu -181 Grad Celsius aufweist. Zur Überwindung der Stromunterdrückung an den Korngrenzen setzten die Forscher Zusatzstoffe wie Kalzium ein. Sie vermindern die Spannungen in der Gitterstruktur und erhöhen die Sauerstoffkonzentration. Hochtemperatur-Supraleiter sind zukunftsweisende Materialien für Hochfeld-Elektromagnete in medizinischen Anwendungen wie in der Magnetischen Tomographie, für verlustarme Stromleitungen über große Distanzen, für supraleitende Motoren und Stromgeneratoren mit hohem Wirkungsgrad. Prototypen von elektrischen Leitern werden bereits in der Energietechnik eingesetzt.

An den Forschungsarbeiten zu den Strömen in Hochtemperatur-Supraleitern waren unter anderem Wissenschaftler des Brookhaven National Laboratory und des Oak Ridge National Laboratory (USA) sowie der Universität Tokio (Japan) beteiligt. Zur Göttinger Arbeitsgruppe von Dr. Jooß gehörte auch Dr. Karsten Guth, der jetzt in der Europäischen Gesellschaft für Leistungshalbleiter mbH (eupec) Entwicklungsarbeiten leitet. Informationen im Internet können unter http://www.gwdg.de/~upmp/neu/Arbeitsgruppen/Jooss abgerufen werden.


Kontaktadresse:
Privatdozent Dr. Christian Jooß
Georg-August-Universität Göttingen
Fakultät für Physik
Institut für Materialphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-5303, Fax (0551) 39-5000
e-mail: jooss@ump.gwdg.de
Internet: http://www.physik.uni-goettingen.de
Weitere Informationen: http://www.gwdg.de/~upmp/neu/Arbeitsgruppen/Jooss
uniprotokolle > Nachrichten > Durchbruch im Verständnis des Stromtransports in Hochtemperatur-Supraleitern
ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/100669/">Durchbruch im Verständnis des Stromtransports in Hochtemperatur-Supraleitern </a>