Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenMittwoch, 22. Oktober 2014 

Stickstoff ist nicht so träge wie man denkt - Die neue Erkenntnis soll zu besseren Halbleitermaterialien führen

11.01.2010 - (idw) Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Stickstoff ist als Hauptbestandteil der Luft ein allgegenwertiges, aber trotzdem we-nig beachtetes Element. Das Molekül gilt als reaktionsträge, man nennt es auch inert. Im Labor arbeitet man deshalb immer dann unter Stickstoffatmosphäre, wenn Sauerstoff oder die Feuchtigkeit der Luft zu aggressiv für empfindliche Proben sind. Der Grund für die Trägheit: Zwei Stickstoffatome sind im Molekül derart fest anei-nandergebunden, dass sie für ihre Umgebung kaum Interesse haben. Forscher des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) kratzen nun an dem sauberen Stickstoff-Image. Im Fachmagazin Physical Review Letters erklären sie, was tatsächlich passiert, wenn Stickstoff mit einem Festkörper, wie zum Beispiel Zinkoxid in Verbindung tritt.

"Unsere Ergebnisse erklären, warum es schwierig ist, die elektrische Leitfähigkeit von Halbleitermaterialien durch Dotieren mit Stickstoff zu ändern", sagt Prof. Nor-bert Nickel vom HZB. Zu dieser Aussage kommt er aufgrund von Berechnungen, die sich aus der Dichtefunktionaltheorie ableiten.

Nickels Berechnungen ergeben, dass das Stickstoffmolekül mit dem Zinkoxid-Gitter in Wechselwirkung tritt und dabei Bindungen zwischen Zink und Sauerstoff aufbricht. In der Folge entstehen im Kristallgitter Defekte, die zu einer verminderten elektri-schen Leitfähigkeit führen. "Dieser Reaktionsweg ist typisch für eine ganze Reihe von sogenannten Verbindungshalbleitern, zum Beispiel Magnesiumoxid oder Natri-umchlorid", sagt Prof. Nickel.

Verbindungshalbleiter werden in der Elektronik und Optoelektronik verwendet. Sie dienen als Basismaterialien, deren elektrische Leitfähigkeit durch den gezielten Einbau von Fremdatomen, das sogenannte Dotieren, erhöht werden kann. Dabei ist es nicht immer einfach, das Fremdatom an der richtigen Stelle im Kristallgitter des Halbleiters zu platzieren. Bislang ungeklärt blieb beispielsweise die im Experiment gefundene Tatsache, dass das Dotieren von Zinkoxid selbst mit hoher Stickstoff-konzentration kaum zu mehr Ladungsträgern im Kristall führt. Eine mögliche Ant-wort haben die Forscher um Prof. Nickel nun gegeben: die eingeschleusten Stick-stoffatome finden sich im Inneren des Halbleiters zu Stickstoffmolekülen zusammen und diese treten in beschriebener Weise in Wechselwirkung mit dem Kristallgitter.

"Zunächst einmal ist die Arbeit Grundlagenforschung. Sie liefert Erkenntnisse dar-über, wie sich Stoffe verhalten und welchen Reaktionsmechanismen sie unterliegen", sagt Prof. Norbert Nickel. Doch darüber hinaus können die Erkenntnisse helfen, den Dotierprozess zu optimieren.

Originalarbeit in Phys. Rev. Lett. 103, 145501 (2009), DOI: 10.1103/PhysRevLett.103.145501
"Defects in compound semiconductors caused by molecular nitrogen"
N. H. Nickel and M. A. Gluba

Weitere Informationen:

HZB
Kekuléstr. 5
12489 Berlin

Prof. Dr. Norbert Nickel
Institut Silizium-Photovoltaik
Tel.: 030-8062-1301, -1317
nickel@helmholtz-berlin.de

Pressestelle:
Dr. Ina Helms
Tel.: 030 / 8062-2034
ina.helms@helmholtz-berlin.de

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissen-schaftsorganisation Deutschlands.
Weitere Informationen: http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13052&sprache=de&ty... http://www.helmholtz-berlin.de/pubbin/news_datei?did=4064 Anhang
Anhang_Pressemitteilung_HZB_Stickstoff
uniprotokolle > Nachrichten > Stickstoff ist nicht so träge wie man denkt - Die neue Erkenntnis soll zu besseren Halbleitermaterialien führen
ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/190416/">Stickstoff ist nicht so träge wie man denkt - Die neue Erkenntnis soll zu besseren Halbleitermaterialien führen </a>