Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenMittwoch, 3. September 2014 

Matter-matter entanglement at a distance

27.05.2011 - (idw) Max-Planck-Institut für Quantenoptik

Scientists at the Max Planck Institute of Quantum Optics prepare quantum mechanical entanglement of two remote quantum systems. Because of its strange consequences the quantum mechanical phenomenon of entangle-ment has been called spooky action at a distance by Albert Einstein. For several years physicists have been developing concepts how to use this phenomenon for practical ap-plications such as absolutely safe data transmission. For this purpose, the entanglement which is generated in a local process has to be distributed among remote quantum sys-tems. A team of scientists around Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics Division, has now demonstrated that two remote atomic quantum systems can be prepared in a shared entangled state (Physical Review Letters, Advance Online Publication, 26 May 2011): one system is a single atom trapped in an optical resonator, the other one a Bose-Einstein condensate consisting of hundreds of thousands of ultracold atoms. With the hybrid system thus generated, the researchers have realized a fundamental building block of a quantum network.

In the quantum mechanical phenomenon of entanglement two quantum systems are coupled in such a way that their properties become strictly correlated. This requires the particles to be in close contact. For many applications in a quantum network, however, it is necessary that entanglement is shared between two remote nodes (stationary quantum bits). One way to achieve this is to use photons (flying quantum bits) for transporting the entanglement. This is somewhat analogous to classical telecommunication, were light is used to transmit informa-tion between computers or telephones. In the case of a quantum network, however, this task is much more difficult as entangled quantum states are extremely fragile and can only survive if the particles are well isolated from their environment.

The team of Professor Rempe has now taken this hurdle by preparing two atomic quantum systems located in two different laboratories in an entangled state: on the one hand a single rubidium atom trapped inside an optical resonator formed by two highly reflective mirrors, on the other hand an ensemble of hundreds of thousands of ultracold rubidium atoms which form a Bose Einstein condensate (BEC). In a BEC, all particles have the same quantum properties so that they all act as a single superatom.

First, a laser pulse stimulates the single atom to emit a single photon. In this process, internal degrees of freedom of the atom are coupled to the polarisation of the photon, so that both particles become entangled. The photon is transported through a 30 m long optical fibre into a neighbouring laboratory where it is directed to the BEC. There, it is absorbed by the whole ensemble. This process converts the photon into a collective excitation of the BEC. The ex-change of quantum information between photons and atomic quantum systems requires a strong light-matter interaction, explains Matthias Lettner, a doctoral student working on the experiment. For the single atom, we achieve this by multiple reflections between the two resonator mirrors, whereas for the BEC the light-matter interaction is enhanced by the large number of atoms.
In a subsequent step, the physicists prove that the single atom and the BEC are really entan-gled. To this end, the photon absorbed in the BEC is retrieved with the help of a laser pulse and the state of the single atom is read out by generating a second photon. The entanglement of the two photons reaches 95 % of the maximally possible value, thus showing that the en-tanglement of the two atomic quantum systems must have been equally good, or even better. Moreover, the entanglement is detectable for approximately 100 microseconds.

A BEC is very well suited as a quantum memory because this exotic state does not suffer from any disturbances caused by thermal motion, says Matthias Lettner. This makes it pos-sible to store and retrieve quantum information with high efficiency and to conserve this state for a long time.

In this experiment, the team of Professor Rempe has realized a building block for a quantum network consisting of two remote, entangled, stationary nodes. This is a milestone on the way to large-scale quantum networks in which, for example, quantum information can be transmit-ted absolutely safe. In addition, such networks might help realizing a universal quantum com-puter in which quantum bits can be exchanged with photons between nodes designed for in-formation storage and processing.

Original publication:

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe
Remote Entanglement between a Single Atom and a Bose-Einstein Condensate

Physical Review Letters, Advance Online Publication, 26 May 2011

Contact:

Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de

Matthias Lettner
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 245
e-mail: matthias.lettner@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 89 32905 213
e-mail: olivia.meyer-streng@mpq.mpg.de
uniprotokolle > Nachrichten > Matter-matter entanglement at a distance
ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/217822/">Matter-matter entanglement at a distance </a>