Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenDienstag, 24. Oktober 2017 

Optimal polarisiert

24.09.2014 - (idw) Universitätsklinikum Freiburg

Grundlagen der kontinuierlichen Hyperpolarisation erläutert Methode könnte Weg zu mobilen MRT-Geräten aufzeigen Ein internationales Forscherteam um Dr. Jan-Bernd Hövener aus der Medizinphysik der Radiologischen Klinik am Universitätsklinikum Freiburg hat eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) entwickelt. Nun erläutern die Wissenschaftler in der renommierten Fachzeitschrift CHEMPHYSCHEM den zugrundeliegenden Mechanismus. Der Vergleich theoretischer Simulationen mit experimentellen Ergebnissen zeigt: Der Grundlegende Mechanismus ist verstanden. Diese Methode könnte auch ohne teure Hochleistungs-Magnete hochaufgelöste MRT-Aufnahmen ermöglichen. Die gründliche Erforschung aller relevanten Faktoren ist ein wichtiger Schritt zum Verständnis des neuen Effekts, welcher zur Entwicklung neuer MRT-Geräte führen könnte. Diese könnten kosteneffiziente chemische Analysen ebenso ermöglichen wie präzise Diagnosen in entlegenen Gebieten. Grund genug für CHEMPHYSCHEM, diese Arbeit auf der innenliegenden Titelseite zu drucken.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen vom Inneren des Körpers sehr gut und ohne schädliche Strahlung dargestellt werden können. In einem künstlichen Magnetfeld wird ein Teil der magnetischen Momente der Wasserstoffatome im Körpergewebe ausgerichtet und durch Radiofrequenzwellen angeregt, woraufhin sie wieder in ihren ursprünglichen Zustand zurückkehren. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer das Schnittbild berechnet wird. Üblicherweise sind sehr teure Spezialmagnete nötig, um eine ausreichende Signalstärke zu erhalten. Bei der neu entwickelten kontinuierlichen Hyperpolarisation richtet sich bereits in niedrigen Magnetfeldern ein weit größerer Anteil der Wasserstoffatome aus. Selbst in einem sehr schwachen Magnetfeld, das mit einer einfachen Batterie erzeugt werden kann, entsteht so ein hundert Mal stärkeres Signal als in kliniküblichen MRT-Anlagen. Und dank Parawasserstoff steht der Polarisierungseffekt beliebig lange zur Verfügung: Normales Wasserstoffgas, dessen Atomkerne sich in einem besonderen Quantenzustand befinden, sorgt mit einer chemischen Austauschreaktion dafür, dass sich die Polarisierung nach jeder Messung erneuert und so Mehrfach-Aufnahmen möglich macht.

In ihrer neusten Arbeit untersuchen die Freiburger Forscher, welche Faktoren diesen Effekt der kontinuierlichen Hyperpolarisation beeinflussen: Wir sind auf der Suche nach den optimalen Bedingungen für dieses Verfahren. Der Vergleich von theoretischer Simulation und experimentellen Ergebnissen zeigt, dass Verweildauer (Temperatur) und Konzentration des Parawasserstoffs ebenso eine Rolle spielen wie die Stärke des Magnetfelds, sagt Hövener, der in der Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht. Es war wichtig, diesen neuen Effekt erst einmal zu verstehen, bevor man über biomedizinische Anwendungen nachdenken kann. Erfreulicherweise ist uns dies jetzt gelungen.

Höveners Forschung stößt auf großes Interesse: Mit seiner letztjährigen Publikation in Nature Communications belegte er den zweiten Platz im Wettbewerb um den Förderpreis der Deutschen Gesellschaft für Biomedizinische Technik (DGBMT) und der Stiftung Familie Klee, der im Oktober auf der Jahrestagung der DGBMT in Hannover verliehen wird.

Die Deutsche Forschungsgemeinschaft (DFG) stellt dem Freiburger Medizinphysiker im Rahmen des Emmy-Noether-Programms die Mittel für den Aufbau einer eigenen Arbeitsgruppe zur Verfügung. Die Forschungsziele stehen für Hövener fest: Wir wollen neue Hyperpolarisationsmethoden entwickeln und uns damit den Herausforderungen der modernen Diagnostik stellen. Letztendlich geht es darum, neue Methoden zu entwickeln, um Krankheiten früher, günstiger und besser erkennen und beobachten zu können.

Titel der Originalpublikation: Continuous Re-hyperpolarization of Nuclear Spins Using
Parahydrogen: Theory and Experiment
doi: 10.1002/cphc.201402177

http://onlinelibrary.wiley.com/doi/10.1002/cphc.201402177/abstract

Kontakt:
Dr. Jan-Bernd Hövener
Gruppenleiter Hyperpolarisation
Medizinphysik, Klinik für Radiologie
Universitätsklinikum Freiburg
Telefon: 0761 270-93910
jan.hoevener@uniklinik-freiburg.de
www.hyperpolarisation.net
Twitter: @hyperpolarise Weitere Informationen:https://www.idw-online.de/de/news604848, Englische Version der Pressemitteilung
uniprotokolle > Nachrichten > Optimal polarisiert
ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/284953/">Optimal polarisiert </a>