Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenMontag, 11. Dezember 2017 

Neues organisches Halbleiter-Material aus Kiel

25.09.2014 - (idw) Christian-Albrechts-Universität zu Kiel

Organisches Zinn in Polymeren steigert ihre Lichtabsorption

Forschenden der Christian-Albrechts-Universität zu Kiel (CAU) ist es erstmals gelungen, organisches Zinn in ein halbleitendes Polymer einzubauen. Dadurch kann der Kunststoff Licht über einen weiten Bereich des Sonnenspektrums absorbieren. Das könnte organische Solarzellen viel effektiver machen. Das neue Material stellen Projektleiterin Professorin Anne Staubitz und ihr Doktorand Julian Linshöft in der renommierten Fachzeitschrift Angewandte Chemie vor. In Gegensatz zu elektrischen Leitern wie Metallen sind Halbleiter Stoffe, die den Strom nur unter gewissen Umständen leiten, wie zum Beispiel bei Bestrahlung durch Licht. Diese Eigenschaft macht halbleitende Kunststoffe, auch halbleitende Polymere genannt, zu äußerst vielversprechende Materialien für die jüngste Generation von Solarzellen, den organischen Solarzellen. Gegenüber den klassischen anorganischen Varianten können diese günstiger hergestellt werden. Außerdem sind diese Polymere auch sehr leicht, was bei vielen Anwendungen, etwa im Transportwesen, vorteilhaft ist. Trotzdem erreichen organische Solarzellen noch nicht die gleiche Effizienz wie anorganische Solarzellen auf Siliziumbasis, so dass hier noch ein großer Forschungsbedarf besteht, ordnet Anne Staubitz vom Otto-Diels-Institut ihr Forschungsthema ein.

Ein wichtiges Kriterium dieser Halbleiter ist, wie gut sie das Licht der Sonne absorbieren können, um es in elektrischen Strom umzuwandeln.
Bei der Umwandlung werden in den organischen Halbleitern zunächst Elektronen von einem Energieniveau in ein höher liegendes angehoben und lassen ein Loch zurück, das positiv geladen ist. Dann werden die Ladungen getrennt zu den unterschiedlichen Polen geleitet: Strom fließt. Sonnenlicht regt diesen Prozess an. Je enger die beiden Energieniveaus beieinander liegen, umso leichter geschieht das; mehr Photonen können absorbiert und damit mehr Sonnenenergie genutzt werden. Polymere, bei denen die Lücke zwischen den Energieniveaus klein ist, haben eine rote, in seltenen Fällen sogar eine violette Farbe.

Ein Ziel der organischen Halbleiterforschung ist es deshalb, organische Polymere mit kleinen Energieabständen herzustellen. Solche stark absorbierenden, tief gefärbten Kunststoffe zu entwickeln ist allerdings schwierig und daher aktuell ein besonders aktiver Forschungszweig. Das neue Material aus unseren Laboren lässt bereits mit bloßem Auge erkennen, dass dies hier gelungen ist!, freut sich Staubitz. Tiefviolett erscheint das Polymer in Lösung und nahezu schwarz als dünner Film.

Um möglichst kleine Energieabstände zu erzielen, gingen die Kieler Forschenden einen neuen Weg in der Chemie. In eine Kohlenstoff-Polymerkette bauten sie organisches Zinn in ringförmigen Zyklen ein, die Stannole genannt werden. Zinn gehört derselben chemischen Gruppe wie Kohlenstoff an und ähnelt ihm deshalb in einigen Eigenschaften. Elektronisch unterscheiden sich Stannole und die entsprechenden Kohlenstoffverbindungen (Cyclopentadiene) jedoch stark. Zinn ist nicht einfach nur ein besonders dickes Kohlenstoffatom, erklärt Anne Staubitz. Es kann die hohen Energieniveaus in seinen organischen Verbindungen massiv herabsetzen. Bis jetzt hatte es aber noch niemand geschafft, diese besonderen Eigenschaften des Zinns in polymeren Materialien zu nutzen.

Insbesondere die Verknüpfung der einzelnen molekularen Bauteile (sogenannte Monomere) zu langen Polymerketten bereitete den Forschenden Schwierigkeiten. Diese Monomere enthielten nämlich nicht nur das gewünschte Zinn in den Stannol-Einheiten selbst; organisches Zinn war auch in reaktiven Kupplungs-Gruppen, die zur Verknüpfung der Monomere zum Polymer benötigt wurden, vorhanden. Nur diese Gruppen sollten zur Reaktion gebracht werden. Die Stannolringe hingegen durften nicht angegriffen werden, weil jede unerwünschte Nebenreaktion zu einer dramatischen Verkürzung der Polymerlänge führt, was einen deutlichen Qualitätsverlust des Polymers verursacht. Mit unserem Projekt sind wir ein hohes Risiko eingegangen, denn Kupplungsreaktionen, die Zinn zielgerichtet auswählen, waren in der Chemie bislang unbekannt, betont Staubitz. Doktorand Julian Linshöft musste also nicht nur eine hochselektive, sondern eine höchstselektive Kreuzkupplungsreaktion entwickeln. Die erste Schwierigkeit lag darin, die richtigen Reaktivitäten für die monomeren Vorstufen zu finden", erinnert sich Linshöft, dessen Promotion von der Deutschen Bundesstiftung Umwelt gefördert wurde. Dazu gab es noch keine Anhaltspunkte in der Fachliteratur.

Das Experiment gelang. Unter Einsatz von Palladium als Reaktionsbeschleuniger stellte das Team den gewünschten Kunststoff her. Das Material lässt sich sehr leicht zu dünnen Filmen verarbeiten, die schwarz glänzend sind und deren Anwendungen nun in organischen Solarzellen getestet werden können. Linshöft: Nun haben wir endlich eine Möglichkeit, diese neuen halbleitenden Kunststoffe herzustellen. Die volle Bandbreite an Einsatzmöglichkeiten wird sich in der nahen Zukunft zeigen."


Originalpublikation
Julian Linshoeft, Evan J. Baum, Andreas Hussain, Paul J. Gates, Christian Näther and Anne Staubitz. Highly Tin Selective Stille Coupling: Synthesis of a Polymer Containing a Stannole in the Main Chain. Angewandte Chemie, DOI: 10.1002/anie.201407377

Fotos und Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-289-1.jpg
Bildunterschrift: Kristalle der Monomere (links) und Stücke des Polymerfilms (rechts) mit der chemischen Struktur des Kunststoffes. Der neue Kunststoff aus Kiel ist von sich aus schwarz. Das zeigt, wie gut er das Licht absorbieren kann: ideal für die Anwendung in organischen Solarzellen.
Foto/Copyright: Julian Linshöft

http://www.uni-kiel.de/download/pm/2014/2014-289-2.jpg
Bildunterschrift: Die meisten Synthesen wurden unter Luft- und Feuchtigkeitsausschluss durchgeführt. Dafür steht der Organischen Chemie eine Glovebox zur Verfügung, in der sich der reaktionsträge Stickstoff als Schutzgas befindet. Im Bildvordergrund: Julian Linshöft, im Bildhintergrund: Anne Staubitz
Foto/Copyright: Grace Suana 2014

http://www.uni-kiel.de/download/pm/2014-289-3.jpg
Bildunterschrift: Das Polymer lässt sich aus der Lösung leicht zu einem dünnen Film verarbeiten. Die Technik, die hier zum Einsatz kommt, ist das Spincoating. Eine Lösung wird auf eine schnell rotierende Scheibe aufgetropft und das Lösungsmittel weggeschleudert. Im Bild: Julian Linshöft bei der Herstellung eines Films.
Foto/Copyright: Grace Suana

http://www.uni-kiel.de/download/pm/2014/2014-289-4.tif

Bildunterschrift: Die Absorption des Polymers reicht bis in den orangen Bereich des Spektrums, so dass das Auge beim Betrachten nur noch den langwelligen Teil des Spektrums wahrnimmt. Somit erscheint das Polymer optisch als tiefviolett. Der organische Zinnzyklus, das Stannol, ist in der Struktur violett markiert.
Copyright: Anne Staubitz

Kontakt
Prof. Dr. Anne Staubitz oder Dipl. Chem. Julian Linshöft
Christian-Albrechts-Universität zu Kiel
Otto Diels-Institut für Organische Chemie
Tel.: 0431/880-3697 oder -5142
E-Mail: astaubitz@oc.uni-kiel.de oder jlinshoeft@oc.uni-kiel.de
uniprotokolle > Nachrichten > Neues organisches Halbleiter-Material aus Kiel
ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/285061/">Neues organisches Halbleiter-Material aus Kiel </a>