Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenSamstag, 25. Oktober 2014 

Submikroskopische Darstellung der Zellfunktionalität

19.09.2002 - (idw) Universität Ulm

Submikroskopische Darstellung der Zellfunktionalität
Biosensoren und Titansubstrate verbessern die Nahfeld-optische Analyse

In der Zellbiologie sind in den letzten Jahren riesige Datenpools (z.B. Etablierung von Genom- und Proteom-Katalogen) angelegt worden. Dieses Datenmaterial eignete sich zwar für eine Beschreibung der molekularen Komponenten einer Zelle, nicht aber für die ebenfalls sehr wichtige Darstellung der Zellfunktionalität. Direkte Einblicke in die Zellfunktionalität erfordern prinzipiell eine zeitaufgelöste zerstörungsfreie Analyse von Makromolekülen in lebenden Zellen, das heißt Technologien, die Nanostrukturen lokalisieren und identifizieren können. Die Lichtmikroskopie scheidet als Methode aus physikalischen Gründen aus. Das Auflösungsvermögen eines Lichtmikroskops ist in Abhängigkeit von der Ausdehnung des auf die Probe fokussierten Lichtstrahls begrenzt. Noch der kleinste Lichtfokus hat infolge von Beugungseffekten eine Ausdehnung, die mindestens einem Drittel der Wellenlänge entspricht (Abbe-Limit). Die Untersuchung von lebenden Biosystemen mittels Rasterelektronenmikroskopie ist grundsätzlich nicht praktikabel, weil sie nicht im flüssigen Medium anwendbar ist. Mit geeigneten Molekülen markierte Zellen konnten unter praktisch physiologischen Bedingungen mit der Laser-Rastermikroskopie lebend analysiert werden, wobei als Auflösungslimit 150nm gelten. Problematisch sind dabei vor allem die eingesetzten Marker, die das Biosystem beeinflussen.

Die Nahfeld-optische Analyse (NOA), seit rund zehn Jahren technisch realisiert als SNOM (Scanning Near-field Optical Microscopy), ist derzeit die einzige physikalische Methode, die prinzipiell alle für die Untersuchung der Zellfunktionalität wichtigen Bedingungen erfüllt, das heißt Topographie und optische Kontraste (optische Oberflächenunterschiede) zerstörungsfrei und zeitaufgelöst sowie höchstauflösend abbilden kann. Im SNOM erfolgt die Abbildung über einen sehr spitzen optischen Sensor. Dieser oszilliert in einer stabilen Resonanzfrequenz im Abstand von wenigen Nanometern im Nahfeld des Meßobjekts, während er dessen Oberfläche rastert.

Im SNOM ist die Auflösung theoretisch unbegrenzt, praktisch wird sie vom Durchmesser der Sensorspitze bestimmt. Mit den derzeit verfügbaren SNOM konnte bereits beides, optischer Kontrast und Topographie von Oberflächen, in nanoskaliger Auflösung abgebildet werden. Der praktischen Etablierung von NOA/SNOM in der Zellbiologie (z. B. für höchstauflösende Analysen von Zellreaktionen in lebenden Zellkulturen) standen jedoch seit den Anfängen von SNOM, das heißt seit rund zehn Jahren, zwei erhebliche Hindernisse im Weg: Dämpfungseffekte im flüssigen Medium, die insbesondere die Sensorempfindlichkeit verminderten, und extrem schwache optische Kontraste an der relevanten Zellmembranoberfläche. Eine Lösung dieser Probleme wurde seit den Anfängen von SNOM weltweit angestrebt.

Nun ist es in Ulm gelungen, diese Einschränkungen zu überwinden. In der März-Ausgabe der Zeitschrift "Micron" (Hydrophobic optical elements for near-field optical analysis (NOA) in liquid environment - a preliminary study, 33, 227-231, 2002), zeigen Dr. Andrei P. Sommer und PD Dr. Ralf-Peter Franke vom Zentralinstitut für Biomedizinische Technik, ZBMT, der Universität Ulm, wie durch die hydrophobe Beschichtung optischer Sensoren mit einem biokompatiblen Polymer die Dämpfungsverluste bei Untersuchungen in wäßriger Umgebung effektiv kompensiert werden können. Wie der optische Kontrast in zellbiologischen NOA-Operationen verstärkt werden kann, beschreiben die Forscher in der April-Ausgabe der Zeitschrift "Journal of Proteome Research" (Near-field Optical Analysis of Living Cells in vitro, 1 (2), 111-114, 2002). Zur Kontrastverstärkung im SNOM wurden lebende menschliche Endothelzellen auf hochgradig ebenen Titanscheiben (Spiegel) ausgesät und mit hydrophob (wasserabweisend) beschichteten optischen Biosensoren gerastert. Titan ist ein biokompatibles Material. So konnte erstmalig eine lebende Zelle unbeeinflußt, ohne kontrastverstärkende Labeling-Substanzen im SNOM dargestellt werden.

Damit wurde das von Eric Betzig, der 1991 mit Jay Trautman und Tim Harris die optische Nahfeldmikroskopie SNOM (in Amerika NSOM) publik gemacht hat, in "SCIENCE" prognostizierte Potential der biologischen SNOM-Entwicklung erfüllt und übertroffen. Die Resultate ermutigten zur Einführung von SNOM-Technologien in weite Bereiche der Lebenswissenschaften. Die Ergebnisse der Ulmer Gruppe fanden rasch internationale Beachtung. So berichteten u.a. die Zeitschriften "Medical Drug Discovery" und "Analytical Chemistry" sowie "Biophotonics International" über den Durchbruch. Im Mai 2001 wurden Sommer und Franke von der NASA nach Houston (Texas) eingeladen um dort auf einer von der NASA (in Verbindung mit Dr. Sommer) organisierten internationalen Konferenz über die Entwicklung zu berichten. Die Beiträge erscheinen als Conference Proceedings der 2nd International NASA Photobiology Conference on Nearfield Optical Analysis (NOA), May 2001, National Aeronautics and Space Administration - Johnson Space Flight Center (NASA-JSC), Houston, TX, U.S.A.

uniprotokolle > Nachrichten > Submikroskopische Darstellung der Zellfunktionalität

ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/6454/">Submikroskopische Darstellung der Zellfunktionalität </a>