Wilde Gene gegen Stress

28.07.2014 - (idw) Max-Planck-Institut für Molekulare Pflanzenphysiologie

Genom der Wildtomate Solanum pennellii gibt Aufschluss über die Ursachen der extremen Stresstoleranz dieser Tomatenart. Die aus den Anden stammende Wildtomate Solanum pennellii zeichnet sich durch eine enorme Stresstoleranz, zum Beispiel gegenüber Trockenheit, aus. Um diese Eigenschaft auch für Kulturtomaten nutzbar zu machen, wurde Solanum pennellii schon oft für Kreuzungen benutzt. Bisher war jedoch nicht bekannt, welche Gene für die Stresstoleranz verantwortlich sind. Eine aktuelle Studie im Journal Nature Genetics, in der ein internationales Wissenschaftlerteam unter der Leitung von Dr. Alisdair Fernie vom Max-Planck-Institut für Molekulare Pflanzenphysiologie und Prof. Dr. Björn Usadel von der Rheinisch-Westfälischen Technischen Hochschule Aachen und dem Forschungszentrum Jülich (ehemals MPI für Molekulare Pflanzenphysiologie) das Genom der Wildtomate sequenziert und analysiert hat, liefert nun die Grundlagen zum Verständnis der Stresstoleranz und damit auch für die zukünftige Tomatenzüchtung. Diese Sequenzierung wurde durch spezielle Fördermittel der Max-Planck-Gesellschaft ermöglicht.

Tomaten stammen ursprünglich aus Südamerika und wurden im 16. Jahrhundert von den spanischen Entdeckern nach Europa gebracht. Die Pflanzen mit ihren großen roten Früchten, die wir heute kennen, sind das Ergebnis intensiver Züchtung. Während dieses Prozesses sind viele der ursprünglichen Eigenschaften der Wildpflanzen aus dem Genpool der Kulturtomaten verschwunden. So zeichnen sich Wildtomaten im Vergleich zur Kulturart Solanum lycopersicum häufig durch eine deutlich höhere Toleranz gegenüber ungünstigen Wachstumsbedingungen, wie zum Beispiel trockenen oder salzigen Böden, aus. Daneben konnten auch wilde Arten identifiziert werden, die Resistenzen gegen Pilzkrankheiten besitzen. Um diese Eigenschaften für Kulturtomaten nutzbar zu machen, werden diese mit den verwandten Wildarten gekreuzt. Die Nachkommen dieser Kreuzungen werden anschließend noch mehrmals mit den Kulturtomaten gekreuzt, man spricht dabei von Rückkreuzung. Diese hat das Ziel, den Anteil der genetischen Information der Wildpflanzen auf wenige Bereiche im Genom und damit auch auf die gewünschten Eigenschaften zu beschränken. Die dabei entstehenden Linien nennt man Introgressionslinien (IL).

Eine wilde Tomatenart, die auf Grund ihrer enormen Stresstoleranz bereits häufiger für die Herstellung von IL benutzt wurde ist Solanum pennellii. Diese IL aus S. pennellii und S. lycopersicum sind unter anderem auf Grund einer veränderten chemischen Zusammensetzung der Frucht oder einer erhöhten Trocken- bzw. Salztoleranz interessant. Solche Eigenschaften nennt man auch quantitative Merkmale. Mit Hilfe dieser IL konnte bereits eine Vielzahl sogenannter quantitative trait loci (QTLs), das heißt Regionen eines quantitativen Merkmals, identifiziert werden. Dabei handelt es sich um Abschnitte im Genom, die für die Ausprägung bestimmter Merkmale verantwortlich sind, erklärt Prof. Dr. Björn Usadel von der Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH Aachen) und dem Forschungszentrum Jülich. Über die Gene, die diesen QTLs zu Grunde liegen, war aber bisher nur wenig bekannt. Hauptsächlich lag das an der fehlenden Information über die Genomsequenz von S. pennellii. Die nun in Nature Genetics veröffentlichte Studie schließt diese Lücke. Das Kooperationsprojekt internationaler Forscherteams wurde zunächst von Dr. Alisdair Fernie und Prof. Dr. Björn Usadel am Max-Planck-Institut für Molekulare Pflanzenphysiologie geleitet und nach einem Wechsel Björn Usadels an die RWTH Aachen und das Forschungszentrum Jülich in den drei Institutionen fortgesetzt.

Mit der Sequenzierung dieser Wildtomate schaffen wir die Grundlage für die genetische Aufklärung der verschiedenen QTLs, wie der Trockentoleranz, so Dr. Alisdair Fernie vom Max-Planck-Institut für Molekulare Pflanzenphysiologie. Wir konnten zum Beispiel ein Gen in S. pennellii identifizieren, das für eine veränderte chemische Zusammensetzung der Cuticula - also der wachsartigen Schicht auf den Blättern verantwortlich ist fügt Dr. Fernie hinzu. Dieses Gen führt zu einem erhöhten Wachsgehalt in der Cuticula, den die Wissenschaftler auch durch chemische Analysen nachweisen konnten. Die natürliche Funktion der Cuticula, der Schutz der Blätter vor Wasserverlust, wird durch den erhöhten Wachsgehalt noch verbessert.

Durch den Vergleich bekannter, Stresstoleranz-vermittelnder Gene mit den QTLs der Introgressionslinien aus S. pennellii und S. lycopersicum, konnte das internationale Team von Wissenschaftlern 100 weitere Kandidatengene identifizieren, die für eine erhöhte Toleranz gegen Trockenheit oder einen erhöhten Salzgehalt verantwortlich sein könnten. Mit der Sequenzierung ist es uns gelungen, eine wertvolle Quelle für die Aufklärung der Eigenschaften der Introgressionslinien zu schaffen, sagt Prof. Dr. Usadel und fügt hinzu, Es gibt noch eine Vielzahl bekannter QTLs, die es mit Hilfe von Genomsequenzen zu erklären gilt.

Die Aufklärung der genetischen Grundlagen quantitativer Merkmale stellt einen Schlüssel zur zukünftigen Verbesserung unserer Kulturpflanzen und damit auch unserer wichtigsten Nahrungsquellen dar.

KD/HR

Kontakt

Dr. Alisdair Fernie
Arbeitsgruppenleiter Zentraler Metabolismus Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8211
Fernie@mpimp-golm.mpg.de

Prof. Dr. Björn Usadel
Institut für Biologie I Zellwände und Bioinformatik
Rheinisch-Westfälische Technische Hochschule Aachen
Tel. 0241/ 80 26767
usadel@bio1.rwth-aachen.de

Dr. Kathleen Dahncke
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de Weitere Informationen:http://www.mpimp-golm.mpg.de/2410/fernie Website der AG Ferniehttp://www.usadellab.org Website der AG Usadelhttp://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3046.html Originalpublikation