Studium, Ausbildung und Beruf
 StudiumHome   FAQFAQ   RegelnRegeln   SuchenSuchen    RegistrierenRegistrieren   LoginLogin

höhensatz-beweis mit skalarprodukt
Gehe zu Seite Zurück  1, 2
Neues Thema eröffnen   Neue Antwort erstellen
Foren-Übersicht -> Mathe-Forum -> höhensatz-beweis mit skalarprodukt
 
Autor Nachricht
gipsy
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 21.09.2005
Beiträge: 1

BeitragVerfasst am: 21 Sep 2005 - 19:34:43    Titel: Yo

also, kathetensatz a^2=c*p ist ganz einfach:

a^2=c*p=(a+h)*b+(a+h)*a=a^2+a*h+a*b+b*h

also
a^2=a^2+a*b+a*h+b*h ist äquivalent mit

0=a*b+a*h+b*h, da a*b=0 gilt

0=a*h+b*h=h*(a+b)=h*c

h und c sind senkrecht zueinander, also gilt c*h=0, der Kathetensatz ist verkroiell bewiesen Wink
Diger_Diga
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 27.09.2006
Beiträge: 2

BeitragVerfasst am: 27 Sep 2006 - 20:29:14    Titel:

zur vollständigkeithalber auch nochmal kathetensatz über pythagoras.
geht natürlich auch!

also bedingung: b² = c * p wobei b natürlich über p

dann

b² = c² - a²

b² = c² - (q² + h²)

b² = c² - ((c-p)²+(b²-p²))

b² = c² - (c² - 2pc + p² + b² - p²) = c² - c² + 2pc - p² - b² + p²

umstellen

2b² = 2pc
b² = pc

q.e.d ^^ DONE^^
Diger_Diga
Newbie
Benutzer-Profile anzeigen
Newbie


Anmeldungsdatum: 27.09.2006
Beiträge: 2

BeitragVerfasst am: 27 Sep 2006 - 20:32:03    Titel:

ach ja und zu dem winkel natürlich ist der winkel 0° zeigen schließlich in die selbe richtung, da er laut den gleichungen a MINUS b = c angenommen hat bzw. a und b zeigen aufeinander zu.
Beiträge der letzten Zeit anzeigen:   
Foren-Übersicht -> Mathe-Forum -> höhensatz-beweis mit skalarprodukt
Neues Thema eröffnen   Neue Antwort erstellen Alle Zeiten sind GMT + 1 Stunde
Gehe zu Seite Zurück  1, 2
Seite 2 von 2

 
Gehe zu:  
Du kannst keine Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum nicht antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.

Chat :: Nachrichten:: Lexikon :: Bücher :: Impressum